178 research outputs found

    Mechanical Design, Modelling and Control of a Novel Aerial Manipulator

    Full text link
    In this paper a novel aerial manipulation system is proposed. The mechanical structure of the system, the number of thrusters and their geometry will be derived from technical optimization problems. The aforementioned problems are defined by taking into consideration the desired actuation forces and torques applied to the end-effector of the system. The framework of the proposed system is designed in a CAD Package in order to evaluate the system parameter values. Following this, the kinematic and dynamic models are developed and an adaptive backstepping controller is designed aiming to control the exact position and orientation of the end-effector in the Cartesian space. Finally, the performance of the system is demonstrated through a simulation study, where a manipulation task scenario is investigated.Comment: Comments: 8 Pages, 2015 IEEE International Conference on Robotics and Automation (ICRA '15), Seattle, WA, US

    PCR-based detection of Plasmodium in Anopheles mosquitoes: a comparison of a new high-throughput assay with existing methods.

    Get PDF
    Published onlineComparative StudyEvaluation StudiesJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: Detection of the four malaria-causing Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae) within their mosquito hosts is an essential component of vector control programmes. Several PCR protocols have been developed for this purpose. Many of these methods, while sensitive, require multiple PCR reactions to detect and discriminate all four Plasmodium species. In this study a new high-throughput assay was developed and compared with three previously described PCR techniques. METHODS: A new assay based on TaqMan SNP genotyping was developed to detect all four Plasmodium species and discriminate P. falciparum from P. vivax, P. ovale and P. malariae. The sensitivity and the specificity of the new assay was compared to three alternative PCR approaches and to microscopic dissection of salivary glands in a blind trial of 96 single insect samples that included artificially infected Anopheles stephensi mosquitoes. The performance of the assays was then compared using more than 450 field-collected specimens that had been stored on silica gel, in ethanol or in isopropanol. RESULTS: The TaqMan assay was found to be highly specific when using Plasmodium genomic DNA as template. Tests of analytical sensitivity and the results of the blind trial showed the TaqMan assay to be the most sensitive of the four methods followed by the 'gold standard' nested PCR approach and the results generated using these two methods were in good concordance. The sensitivity of the other two methods and their agreement with the nested PCR and TaqMan approaches varied considerably. In trials using field collected specimens two of the methods (including the nested protocol) showed a high degree of non-specific amplification when using DNA derived from mosquitoes stored in ethanol or isopropanol. The TaqMan method appeared unaffected when using the same samples. CONCLUSION: This study describes a new high-throughput TaqMan assay that very effectively detects the four Plasmodium species that cause malaria in humans and discriminates the most deadly species, P. falciparum, from the others. This method is at least as sensitive and specific as the gold standard nested PCR approach and because it has no requirement for post-PCR processing is cheaper, simpler and more rapid to run. In addition this method is not inhibited by the storage of mosquito specimens by drying or in ethanol or isopropanol.BBSRCInnovative Vector Control Consortiu

    Information theory-based shot cut/fade detection and video summarization

    Full text link

    Robust similarity metrics for the registration of 3D multimodal medical images

    Get PDF
    In this paper, we develop data driven registration algorithms, relying on pixel similarity metrics, that enable an accurate rigid registration of dissimilar single or multimodal 2D/3D medical images . Gross dissimilarities are handled by considering similarity measures related to robust M-estimators . Fast stochastic multigrid optimization algorithms are used to minimize these similarity metrics . The proposed robust similarity metrics are compared to the most popular standard similarity metrics on real MRI/MRI and MRI/SPECT image pairs showing gross dissimilarities . A blinded evaluation of the algorithm was performed, using as gold standard a prospective, marker-based registration method, by participating in a registration evaluation project (Vanderbilt University) . Our robust similarity measures compare favourably with all standard (non robust) techniques .Le recalage non supervisé d'images médicales volumiques reste un problème difficile en raison de l'importante variabilité et des grandes différences d'information pouvant apparaître dans des séquences d'images de même modalité ou dans des couples d'images multimodales. Nous présentons dans cet article des méthodes robustes de recalage rigide d'images 2D et 3D monomodales et multimodales, reposant sur la minimisation de mesures de similarité inter-images. Les méthodes proposées s'appuient sur la théorie de l'estimation robuste et mettent en oeuvre des M-estimateurs associés à des techniques d'optimisation stochastique multigrilles rapides. Ces estimateurs robustes sont évalués à travers le recalage d'images médicales volumiques monomodales (IRM/IRM) et multimodales (IRM/TEMP). Ils sont comparés aux autres fonctions de similarité classiques, proposées dans la littérature. Les méthodes de recalage robustes ont, en particulier, été validées dans le cadre d'un protocole comparatif mis en place par l'Université de Vanderbilt. Elles sont actuellement utilisées en routine clinique et conduisent, tant pour les images de même modalité que pour les images multimodales à une précision sous-voxel, comparable aux meilleures méthodes actuelles. Elles permettent de plus de recaler des couples d'images sur lesquels les méthodes classiques échouent

    An empirical analysis of the determinants of mobile instant messaging appropriation in university learning

    Get PDF
    Published ArticleResearch on technology adoption often profiles device usability (such as perceived usefulness) and user dispositions (such as perceived ease of use) as the prime determinants of effective technology adoption. Since any process of technology adoption cannot be conceived out of its situated contexts, this paper argues that any pre-occupation with technology acceptance from the perspective of device usability and user dispositions potentially negates enabling contexts that make successful adoption a reality. Contributing to contemporary debates on technology adoption, this study presents flexible mobile learning contexts comprising cost (device cost and communication cost), device capabilities (portability, collaborative capabilities), and learner traits (learner control) as antecedents that enable the sustainable uptake of emerging technologies. To explore the acceptance and capacity of mobile instant messaging systems to improve student performance, the study draws on these antecedents, develops a factor model and empirically tests it on tertiary students at a South African University of Technology. The study involved 223 national diploma and bachelor’s degree students and employed partial least squares for statistical analysis. Overall, the proposed model displayed a good fit with the data and rendered satisfactory explanatory power for students’ acceptance of mobile learning. Findings suggest that device portability, communication cost, collaborative capabilities of device and learner control are the main drivers of flexible learning in mobile environments. Flexible learning context facilitated by learner control was found to have a positive influence on attitude towards mobile learning and exhibited the highest path coefficient of the overall model. The study implication is that educators need to create varied learning opportunities that leverage learner control of learning in mobile learning systems to enhance flexible mobile learning. The study also confirmed the statistical significance of the original Technology Acceptance Model constructs

    Field-Caught Permethrin-Resistant Anopheles gambiae Overexpress CYP6P3, a P450 That Metabolises Pyrethroids

    Get PDF
    Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated enzyme metabolises both alpha-cyano and non–alpha-cyano pyrethroids. This is the first study to demonstrate the capacity of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic basis of insecticide resistance in wild mosquito populations

    3D Volume Reconstruction by Serially Acquired 2D Slices Using a Distance Transform-Based Global Cost Function

    Full text link
    Abstract. An accurate, computationally eÆcient and fully-automated algorithm for the alignment of 2D serially acquired sections forming a 3D volume is presented. The method accounts for the main shortcomings of 3D image alignment: corrupted data (cuts and tears), dissimilarities or discontinuities between slices, missing slices. The approach relies on the optimization of a global energy function, based on the object shape, measuring the similarity between a slice and its neighborhood in the 3D volume. Slice similarity is computed using the distance transform measure in both directions. No particular direction is privileged in the method avoiding global osets, biases in the estimation and error prop-agation. The method was evaluated on real images (medical, biological and other CT scanned 3D data) and the experimental results demon-strated the method's accuracy as reconstuction errors are less than 1 degree in rotation and less than 1 pixel in translation.

    Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum

    Get PDF
    Background: Phosphine is a valuable fumigant to control pest populations in stored grains and grain products. However, recent studies indicate a substantial increase in phosphine resistance in stored product pests worldwide.Results: To understand the molecular bases of phosphine resistance in insects, we used RNA-Seq to compare gene expression in phosphine-resistant and susceptible laboratory populations of the red flour beetle, Tribolium castaneum. Each population was evaluated as either phosphine-exposed or no phosphine (untreated controls) in triplicate biological replicates (12 samples total). Pairwise analysis indicated there were eight genes differentially expressed between susceptible and resistant insects not exposed to phosphine (i.e., basal expression) or those exposed to phopshine (>8-fold expression and 90 % C.I.). However, 214 genes were differentially expressed among all four treatment groups at a statistically significant level (ANOVA, p < 0.05). Increased expression of 44 cytochrome P450 genes was found in resistant vs. susceptible insects, and phosphine exposure resulted in additional increases of 21 of these genes, five of which were significant among all treatment groups (p < 0.05). Expression of two genes encoding anti-diruetic peptide was 2- to 8-fold reduced in phosphine-resistant insects, and when exposed to phosphine, expression was further reduced 36- to 500-fold compared to susceptible. Phosphine-resistant insects also displayed differential expression of cuticle, carbohydrate, protease, transporter, and many mitochondrial genes, among others. Gene ontology terms associated with mitochondrial functions (oxidation biological processes, monooxygenase and catalytic molecular functions, and iron, heme, and tetrapyyrole binding) were enriched in the significantly differentially expressed dataset. Sequence polymorphism was found in transcripts encoding a known phosphine resistance gene, dihydrolipoamide dehydrogenase, in both susceptible and resistant insects. Phosphine-resistant adults also were resistant to knockdown by the pyrethroid deltamethrin, likely due to the increased cytochrome P450 expression.Conclusions: Overall, genes associated with the mitochondria were differentially expressed in resistant insects, and these differences may contribute to a reduction in overall metabolism and energy production and/or compensation in resistant insects. These data provide the first gene expression data on the response of phosphine-resistant and -susceptible insects to phosphine exposure, and demonstrate that RNA-Seq is a valuable tool to examine differences in insects that respond differentially to environmental stimuli.Peer reviewedEntomology and Plant Patholog
    • …
    corecore